Two Different Computing Methods of the Smith Arithmetic Determinant

نویسندگان

  • Xing-Jian Li
  • Shen Qu
چکیده

The Smith arithmetic determinant is investigated in this paper. By using two different methods, we derive the explicit formula for the Smith arithmetic determinant. Keywords—Elementary row transformation, Euler function, Matrix decomposition, Smith arithmetic determinant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the First Geometric-Arithmetic Index of Hexagonal Systems and Phenylenes

The first geometric-arithmetic index was introduced in the chemical theory as the summation of 2 du dv /(du  dv ) overall edges of the graph, where du stand for the degree of the vertex u. In this paper we give the expressions for computing the first geometric-arithmetic index of hexagonal systems and phenylenes and present new method for describing hexagonal system by corresponding a simple g...

متن کامل

On Computing the Determinant and Smith Form of an Integer Matrix

A probabilistic algorithm is presented to find the determinant of a nonsingular, integer matrix. For a matrix A n n the algorithm requires O n3 5 logn 4 5 bit operations (assuming for now that entries in A have constant size) using standard matrix and integer arithmetic. Using asymptotically fast matrix arithmetic, a variant is described which requires O n2 θ 2 log2 n loglogn bit operations, wh...

متن کامل

Computing the Determinant and Smith Form of an Integer Matrix

A probabilistic algorithm is presented to find the determinant of a nonsingular, integer matrix. For a matrix A n n the algorithm requires O n3 5 logn 4 5 bit operations (assuming for now that entries in A have constant size) using standard matrix and integer arithmetic. Using asymptotically fast matrix arithmetic, a variant is described which requires O n2 2 log2 n loglogn bit operations, wher...

متن کامل

On the total version of geometric-arithmetic index

The total version of geometric–arithmetic index of graphs is introduced based on the endvertex degrees of edges of their total graphs. In this paper, beside of computing the total GA index for some graphs, its some properties especially lower and upper bounds are obtained.

متن کامل

ENTROPY OF GEODESIC FLOWS ON SUBSPACES OF HECKE SURFACE WITH ARITHMETIC CODE

There are dierent ways to code the geodesic flows on surfaces with negative curvature. Such code spaces give a useful tool to verify the dynamical properties of geodesic flows. Here we consider special subspaces of geodesic flows on Hecke surface whose arithmetic codings varies on a set with innite alphabet. Then we will compare the topological complexity of them by computing their topological ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013